Numerical Study of Interaction of a Vortical Density Inhomogeneity with Shock and Expansion Waves
نویسندگان
چکیده
We studied the interaction of a vortical density inhomogeneity (VDI) with shock and expansion waves. We call the VDI the region of concentrated vorticity (vortex) with a density different from that of ambiance. Non-parallel directions of the density gradient normal to the VDI surface and the pressure gradient across a shock wave results in an additional vorticity. The roll-up of the initial round VDI towards a non-symmetrical shape is studied numerically. Numerical modeling of this interaction is performed by a 2-D Euler code. The use of an adaptive unstructured numerical grid makes it possible to obtain high accuracy and capture regions of induced vorticity with a moderate overall number of mesh points. For the validation of the code, the computational results are compared with available experimental results and good agreement is obtained. The interaction of the VDI with a propagating shock wave is studied for a range of initial and induced circulations and obtained flow patterns are presented. The splitting of the VDI develops into the formation of a non-symmetrical vortex pair and not in a set of vortices. A method for the analytical computation of an overall induced circulation Γ1 as a result of the interaction of a moving VDI with a number of waves is proposed. Simplified, approximated, expressions for Γ1 are derived and their accuracy is discussed. The splitting of the VDI passing through the Prandtl-Meyer expansion wave is studied numerically. The obtained VDI patterns are compared to those for the interaction of the VDI with a propagating shock wave for the same values of initial and induced circulations. These patterns have similar shapes for corresponding time moments.
منابع مشابه
Generation of Love Wave in a Media with Temperature Dependent Properties Over a Heterogeneous Substratum
The present paper deals with the generation of Love waves in a layer of finite thickness over an initially stressed heterogeneous semi-infinite media. The rigidity and density of the layer are functions of temperature, i.e. they are temperature dependent. The lower substratum is an initially stressed medium and its rigidity and density vary linearly with the depth. The frequency relation of Lo...
متن کاملDamping of visco-resistive Alfven waves in solar spicules
Interaction of Alfven waves with plasma inhomogeneity generates phase mixing which can cause the dissipation of Alfven waves. We investigated the dissipation of standing Alfven waves due to phase mixing at the presence of steady flow and sheared magnetic field in solar spicules. Moreover, the transition region between chromosphere and corona was considered. Our numerical simulation showed that ...
متن کاملNumerical Investigation of the Effect of Bubble-Bubble Interaction on the Power of Propagated Pressure Waves
The study of bubble dynamics, especially the interaction of bubbles, has drawn considerable attention due to its various applications in engineering and science. Meanwhile, the study of the oscillation effect of a bubble on the emitted pressure wave of another bubble in an acoustic field which has less been investigated. This issue is investigated in the present study using the coupling of Kell...
متن کاملAn Analytic Study on the Dispersion of Love Wave Propagation in Double Layers Lying Over Inhomogeneous Half-Space
In this work, attempts are made to study the dispersion of Love waves in dry sandy layer sandwiched between fiber reinforced layer and inhomogeneous half space.Inhomogeneity in half space associated with density and rigidity and considered in exponential form. Displacement components for fiber reinforced layer, dry sandy layer and inhomogeneous half-space have been obtained by using method of s...
متن کامل3-D Numerical Investigation of Flow Field in Starting Stage of High Speed Wind Tunnels
High speed wind tunnels are widely used in the study of fluid flow behavior around various objects. The air flow in the starting step of supersonic wind tunnels is transient including strong shock waves caused by the interaction of the tunnel main stream and the boundary layer at walls. To arrive in running step, the tunnel must be designed so as these waves leave immediately the test section. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998